Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-(+)-4-(Oxiran-2-ylmethoxy)-9Hcarbazole

Ding-Qiang Lu,^a* Jia Chen,^a Wen-Yuan Wu,^b Xiu-Quan Ling^a and Ya-Jun Chang^a

^aCollege of Pharmaceutical Sciences, Nanjing University of Technolgy, Nanjing 210009, People's Republic of China, and ^bCollege of Science, Naniing University of Technolgy, Nanjing 210009, People's Republic of China Correspondence e-mail: ludingqiang@njut.edu.cn

Received 12 July 2010; accepted 29 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.058; wR factor = 0.124; data-to-parameter ratio = 8.0.

In the title compound, $C_{15}H_{13}NO_2$, all atoms of the carbazole group are coplanar (r.m.s. deviation = 0.005 Å), and the dihedral angle between this plane and C-O-C plane of oxane group is 57.1 (4) $^{\circ}$. The crystal packing is stabilized by an N-H···O hydrogen bond, resulting in infinite supramolecular chains along [001].

Related literature

For general background to the target product, see: Hildesheim et al. (2002); Morgan (1994). For other intermediates with similar structures, see: Herbert et al. (1987). For assignment of the absolute structure based on the synthesis, see: Rao et al. (2007)

Experimental

Crystal data C15H13NO2

 $M_{r} = 239.26$

Orthorhombic, $P2_12_12_1$ a = 7.6140 (15) Åb = 9.5870 (19) Åc = 16.628 (3) Å V = 1213.8 (4) Å³

Data collection

Enraf–Nonius CAD-4	1298 independent reflections
diffractometer	834 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.061$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.974, T_{\max} = 0.991$	reflections
2198 measured reflections	intensity decay: none

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	163 parameters
$wR(F^2) = 0.124$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
1298 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^i$	0.86	2.09	2.948 (5)	172
Symmetry code: (i) $-x + \frac{3}{2}, -y + 2, z + \frac{1}{2}$.				

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge Professor Hua-qin Wang of the Analysis Center, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2309).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Herbert, L. & Heppenheim, F. (1987). WO Patent 4503067.

Hildesheim, J., Finogueev, S., Aronhime, J., Dolitzky, B.-Z., Ben-Valid, S. & Kor, I.. (2002). WO Patent 02/00216 A1.

Morgan, T. (1994). Clin. Pharmacokinet. 26, 335-337.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Rao, S. M., Srinivas, A. S. S. V., Rani, S., Reddy, G. O. & Rajagopal, S. (2007). WO Patent 2007/042912 A2.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.10 \times 0.10 \ \text{mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

supplementary materials

Acta Cryst. (2010). E66, o2785 [doi:10.1107/S1600536810038900]

(S)-(+)-4-(Oxiran-2-ylmethoxy)-9H-carbazole

D. Lu, J. Chen, W. Wu, X. Ling and Y. Chang

Comment

4-(2,3-epoxypropoxy)carbazole is used as a starting agent for the synthesis of 1-(carbazol-4-yloxy-3-[[2-(O-methoxyphenoxy)ethyl]amino]-2-propranol (Herbert & Heppenheim, 1987; Hildesheim *et al.*, 2002), which is a commercial drug (carvedilol) with α - and β_1 - receptor blocking activity that has been approved for the treatment of congestive heart failure (CHF). However carvedilol is actually a racemic mixture of the *R* and S enantiomers, and the β -receptor blocking activity of the S-enantiomer is about 200 times higher than that of *R*-carvedilol (Morgan, 1994).

We have now synthesized the title compound (CAS:67843–74-7), (I), as an intermediate in the synthesis of the target molecule, S-carvedilol, and report its structure here. The optically pure (R)-(-)-epichlorohydrin (CAS: 51594–55-9) was used as the starting agent, and during the reaction, an inversion of the chiral C atom occurred to give the final product (I) (Rao *et al.*, 2007).

Both the carbazole group and oxane group are planar, and the dihedral angle between them is 57.1 (4). The molecules are stacked along the *a* axis, and linked by N–H..O hydrogen bonds to form infinite chains along the [001] direction,

Experimental

For the preparation of the title compound, K_2CO_3 (20.73 g, 0.15 mol) and (*R*)-(-)-epichlorohydrin (7 ml, 0.09 mol) were added to an IPA (60 ml) solution containing 4-hydroxycarbazole (10.98 g, 0.06 mol). Then the reaction mixture was refluxed for 5 h at 355 K. The crude product was purified by recrystallization from ethyl acetate to provide colourless crystals suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically [N–H = 0.86 Å, and C–H = 0.93, 0.97 and 0.98 Å for aromatic, methyne and methine H atoms, respectively] and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged for the final cycles of refinement.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. Supramolecular chains along the [010] direction by N–H…O hydrogen bonds (dashed lines).

(S)-(+)-4-(Oxiran-2-ylmethoxy)-9H-carbazole

C₁₅H₁₃NO₂ $M_r = 239.26$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.6140 (15) Å b = 9.5870 (19) Å c = 16.628 (3) Å V = 1213.8 (4) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	834 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.061$
graphite	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
$\omega/2\theta$ scans	$h = -9 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 11$
$T_{\min} = 0.974, \ T_{\max} = 0.991$	$l = 0 \rightarrow 19$
2198 measured reflections	3 standard reflections every 200 reflections
1298 independent reflections	intensity decay: none

Refinement

Refinement on F^2	ł
Least-squares matrix: full	r S
$R[F^2 > 2\sigma(F^2)] = 0.058$	ł
$R(r^2) = 0.124$	S
WR(F) = 0.124	1
<i>S</i> = 1.05	, \
1298 reflections	(
163 parameters	Z
0 restraints	Z

F(000) = 504 $D_x = 1.309 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.30 \times 0.10 \times 0.10 \text{ mm}$

 $h = -9 \rightarrow 9$ $k = 0 \rightarrow 11$ $l = 0 \rightarrow 19$ 3 standard reflections every 200 reflections intensity decay: none Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0341P)^{2} + 0.3329P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.8591 (5)	1.1011 (4)	0.7894 (2)	0.0555 (11)
H1	0.9127	1.1158	0.8341	0.067*
01	0.4664 (4)	0.9701 (4)	0.59614 (16)	0.0626 (10)
02	0.4551 (4)	0.8193 (4)	0.43812 (17)	0.0717 (11)
C1	0.8311 (6)	1.1218 (5)	0.5757 (2)	0.0521 (12)
H1A	0.7493	1.0967	0.5367	0.063*
C2	0.9839 (7)	1.1859 (6)	0.5539 (3)	0.0659 (15)
H2A	1.0065	1.2022	0.4998	0.079*
C3	1.1059 (7)	1.2271 (6)	0.6109 (3)	0.0740 (16)
НЗА	1.2082	1.2719	0.5946	0.089*
C4	1.0774 (6)	1.2024 (6)	0.6922 (3)	0.0652 (15)
H4A	1.1595	1.2291	0.7306	0.078*
C5	0.9233 (6)	1.1369 (5)	0.7139 (3)	0.0523 (12)
C6	0.7981 (6)	1.0942 (5)	0.6563 (2)	0.0441 (11)
C7	0.6551 (6)	1.0313 (5)	0.6998 (2)	0.0452 (11)
C8	0.6986 (6)	1.0394 (5)	0.7821 (3)	0.0520 (12)
C9	0.5853 (7)	0.9866 (5)	0.8409 (2)	0.0595 (14)
H9A	0.6131	0.9928	0.8953	0.071*
C10	0.4327 (7)	0.9258 (6)	0.8160 (3)	0.0648 (15)
H10A	0.3572	0.8893	0.8546	0.078*
C11	0.3850 (7)	0.9158 (6)	0.7348 (3)	0.0651 (15)
H11A	0.2803	0.8731	0.7198	0.078*
C12	0.4970 (6)	0.9709 (5)	0.6776 (2)	0.0501 (12)
C13	0.3242 (6)	0.8870 (6)	0.5679 (2)	0.0648 (15)
H13A	0.2137	0.9217	0.5890	0.078*
H13B	0.3387	0.7909	0.5849	0.078*
C14	0.3258 (7)	0.8962 (7)	0.4805 (3)	0.0706 (15)
H14A	0.3019	0.9894	0.4589	0.085*
C15	0.2734 (6)	0.7819 (6)	0.4288 (3)	0.0687 (16)
H15A	0.2331	0.6966	0.4541	0.082*
H15B	0.2164	0.8046	0.3783	0.082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.057 (2)	0.073 (3)	0.0360 (19)	-0.006 (2)	-0.0127 (19)	-0.0015 (19)
01	0.0521 (18)	0.092 (3)	0.0436 (17)	-0.012 (2)	-0.0062 (15)	-0.0092 (17)
02	0.053 (2)	0.115 (3)	0.0468 (19)	-0.007 (2)	0.0064 (17)	-0.0009 (19)
C1	0.055 (3)	0.059 (3)	0.042 (2)	-0.002 (3)	-0.006 (2)	0.004 (2)
C2	0.068 (4)	0.090 (4)	0.040 (3)	-0.011 (4)	-0.003 (3)	0.005 (3)
C3	0.065 (3)	0.093 (4)	0.064 (3)	-0.025 (3)	0.002 (3)	-0.003 (3)
C4	0.061 (3)	0.080 (4)	0.055 (3)	-0.008 (3)	-0.012 (3)	-0.004 (3)
C5	0.053 (3)	0.061 (3)	0.043 (2)	0.000 (3)	-0.001 (2)	0.000 (2)
C6	0.045 (3)	0.050 (3)	0.037 (2)	0.004 (2)	-0.003 (2)	0.001 (2)
C7	0.058 (3)	0.042 (3)	0.035 (2)	0.007 (3)	-0.005 (2)	-0.004 (2)
C8	0.054 (3)	0.057 (3)	0.046 (2)	0.004 (3)	-0.005 (2)	-0.003 (2)
C9	0.071 (4)	0.070 (4)	0.037 (2)	0.005 (3)	0.004 (2)	0.002 (2)
C10	0.076 (4)	0.070 (4)	0.048 (3)	0.000 (3)	0.021 (3)	0.002 (3)
C11	0.059 (3)	0.079 (4)	0.058 (3)	-0.014 (3)	0.015 (3)	-0.005 (3)
C12	0.050 (3)	0.058 (3)	0.043 (2)	0.007 (3)	-0.004 (2)	-0.011 (2)
C13	0.045 (3)	0.092 (4)	0.057 (3)	-0.007 (3)	-0.002 (2)	-0.012 (3)
C14	0.058 (3)	0.093 (4)	0.060 (3)	-0.007 (3)	-0.011 (3)	-0.003 (3)
C15	0.056 (3)	0.084 (4)	0.066 (3)	-0.015 (3)	-0.003 (3)	-0.008 (3)

Geometric parameters (Å, °)

N1—C8	1.363 (6)	C6—C7	1.439 (6)
N1—C5	1.389 (6)	C7—C12	1.386 (6)
N1—H1	0.8600	С7—С8	1.409 (5)
O1—C12	1.375 (4)	C8—C9	1.399 (6)
O1—C13	1.424 (5)	C9—C10	1.364 (7)
O2—C14	1.418 (6)	С9—Н9А	0.9300
O2—C15	1.438 (6)	C10-C11	1.401 (6)
C1—C2	1.365 (7)	C10—H10A	0.9300
C1—C6	1.389 (5)	C11—C12	1.382 (6)
C1—H1A	0.9300	C11—H11A	0.9300
С2—С3	1.385 (6)	C13—C14	1.455 (6)
C2—H2A	0.9300	C13—H13A	0.9700
C3—C4	1.388 (6)	C13—H13B	0.9700
С3—НЗА	0.9300	C14—C15	1.449 (7)
C4—C5	1.380 (6)	C14—H14A	0.9800
C4—H4A	0.9300	C15—H15A	0.9700
C5—C6	1.412 (6)	C15—H15B	0.9700
C8—N1—C5	110.0 (4)	С10—С9—Н9А	121.1
C8—N1—H1	125.0	С8—С9—Н9А	121.1
C5—N1—H1	125.0	C9—C10—C11	122.9 (5)
C12—O1—C13	117.2 (4)	C9-C10-H10A	118.6
C14—O2—C15	61.0 (3)	C11-C10-H10A	118.6
C2—C1—C6	119.7 (4)	C12-C11-C10	118.4 (5)

$N1-H1\cdotsO2^{i}$		0.86	2.09	2.948 (5)	172
D—H··· A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
<i>Hydrogen-bond geometry (Å,</i> $^{\circ}$)					
C12—C7—C8—N1	179.5 (4)		C13—C14—C15—O2		-106.0 (6)
C5—N1—C8—C7	1.0 (5)		O1—C13—C14—C15		146.6 (5)
C5—N1—C8—C9	179.9 (5)		O1—C13—C14—O2		75.6 (6)
C5—C6—C7—C8	0.5 (5)		C15—O2—C14—C13		113.9 (6)
C1—C6—C7—C8	-177.6 (5)		C12—O1—C13—C14		-176.5 (4)
C5—C6—C7—C12	180.0 (5)		C6—C7—C12—C11		178.9 (5)
C1—C6—C7—C12	1.9 (10)		C8—C7—C12—C11		-1.7 (8)
N1—C5—C6—C7	0.1 (5)		C6—C7—C12—O1		-0.3 (8)
C4—C5—C6—C7	-179.6 (4)		C8—C7—C12—O1		179.1 (4)
N1C5C6C1	178.5 (4)		C10—C11—C12—C7		1.7 (8)
C4—C5—C6—C1	-1.2 (7)		C10-C11-C12-O1		-179.3 (5)
C2—C1—C6—C7	179.4 (5)		C13—O1—C12—C7		168.4 (4)
C2-C1-C6-C5	1.5 (7)		C13—01—C12—C11		-10.7 (7)
C8—N1—C5—C6	-0.7 (5)		C9-C10-C11-C12		-0.4 (8)
C8—N1—C5—C4	179.0 (5)		C8-C9-C10-C11		-0.8 (8)
C3—C4—C5—C6	0.7 (8)		C7—C8—C9—C10		0.7 (7)
C3-C4-C5-N1	-178.9(5)		N1-C8-C9-C10		-178.0(5)
$C_2 = C_3 = C_4 = C_5$	-0.6(9)		C6-C7-C8-C9		-1800(4)
C1 - C2 - C3 - C4	1.5 (6)		$C_{}C_{-$		0.5(3)
C6	-1 5 (8)		C6-C7-C8-N1		-0.9(5)
C10-C9-C8	117.8 (4)				2
C9—C8—C7	121.0 (4)		H15A—C15—H15B		115.0
N1—C8—C7	108.7 (4)		C14—C15—H15B		117.9
N1—C8—C9	130.3 (4)		O2—C15—H15B		117.9
C8—C7—C6	106.7 (4)		C14—C15—H15A		117.9
C12C6	134.3 (4)		02—C15—H15A		117.9
C12—C7—C8	119.0 (4)		02—C15—C14		58.8 (3)
C5-C6-C7	106.9 (3)		C13—C14—H14A		114.8
C1—C6—C7	134 5 (4)		C15—C14—H14A		114.8
C1—C6—C5	118 5 (4)		02-C14-H14A		114.8
N1-C5-C6	121.9(+) 1077(4)		C_{15} C_{14} C_{13}		123 0 (5)
$C_{4} = C_{5} = C_{6}$	120.+(4) 121.9(4)		02-01-013 02-014-013		1181(5)
C4	121.1 130 4 (4)		02-014-015		60.2 (3)
C3—C4—H4A	121.1		H13A_C13_H13B		108.6
C5—C4—H4A	121.1		C14_C13_H13B		110.4
C5-C4-C3	117.0		01H13R		110.4
C4_C3_H3A	119.6		С14_С13_Н13А		110.4
$C_2 = C_3 = C_4$	120.0 (3)		01-C13-H13A		100.0 (4)
C_{2} C_{2} C_{4}	117.4		01 - 012 - 014		120.0 (4)
$C_1 - C_2 - \Pi_2 A$	119.4		01 - 012 - 07		114.5 (4)
C1 - C2 - C3	121.2 (4)		01—C12—C11		124.9 (4)
C6-C1-HIA	120.1		CIO-CII-HIIA		120.8
C2—C1—H1A	120.1		C12—C11—H11A		120.8
C2 C1 1114	100.1		C12 C11 H114		120.0

Symmetry codes: (i) -x+3/2, -y+2, z+1/2.

Fig. 1

Fig. 2